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ABSTRACT 

We calculate the hadronic matrix elements of local operators relevant to the 

K --t TX decays using the l/N expansion. This approach permits a consistent 

treatment of both short and long distance effects. The latter provide important 

contributions to the enhancement and suppression of the AI = l/2 and AZ = 3/2 

amplitudes, respectively. A satisfactory description of the observed data can be 

achieved within the standard model. 
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In the recent papers [l-3] we have analysed the X -+ xx decays in the frame- 

work of the Standard Model using the l/N expansion, N being the number of 

colours. We have shown that this expansion, while simplifying considerably the 

usual 14-61, rather complex, short distance analysis provides an effective means 

for calculating the weak decay amplitudes. Neglecting (small) CP violating effects 

one finds [l-3] in the large N limit 

A(K -+ TX) = -~sine,co~~,;_f;,h~;(~)(~n I Qib) I K) 0) 

where r; is the Wilson coefficient function associated with the four quark operator 

Q;, p is the normalization scale and Bc is the Cabibbo angle. The operators Q; 

are constructed from the light quark fields only (u, d, s) and are given as follows 

91 = (@v-A(au)v-A Qz = (Su)V-A(Gd)V-A 

f& = -8 (~md(~~d.d (2) 

where (V zb A) refer to rr( 1 f 75), qR(,C) = (l/2)(1 i ys)q and sums over colour 

indices and q = (u,d,s) in 66 are understood. The operators Qr and Qz are 

the usual current-current operators, whereas Qc is the dominant density-density 

penguin operator [7]. Since the operators Qi in Eq. (2) are constructed from the 

light quark fields only, the full information about the heavy quark fields (c, 6, t) is 

contained in the coefficient functions q. Correspondingly the normalization scale 

p in Eq. (1) is not completely arbitrary but must be chosen below the charm quark 

mass. Now as discussed in [2,3] the physics contributions from scales above p are 

fully contained in the coefficients “i(p) whereas the remaining contributions from 

the low energy physics below p (i.e. from zero momentum to p) are contained in 

the matrix elements (XX ( Qi(p) ( K). It follows then that for /J = O(lGeV), the 

coefficients functions z;(p) can to a good approximation be calculated within a 

quark picture by means of the usual renormalization group methods. In principle 

the meson matrix elements can also be computed in a nonperturbative quark- 

gluon picture where mesons occur as bound states. However it should also be 

possible to formulate a dual representation of the strong dynamics in terms of 

hadronic degrees of freedom. In the large N limit, this representation becomes 

exact and a full description of the physics can be achieved using a complete set 
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of interacting meson fields. In this meson picture a short distance analysis is 

exceedingly complex requiringmany meson states and complicated interactions. 

However the long distance analysis is correspondingly simple as only the lightest 

meson states may be required and the important interactions are largely dictated 

by the chiial symmetry structure of the meson lagrangian. Hence we will achieve 

a consistent unified description of the physics by using the quark-gluon picture 

at short distance matched to the meson picture at long distance with the scale p 

chosen to minimize the effects of the approximate treatments used in both pictures. 

In the quark picture, the scale /A enters naturally as the normalization scale in 

the renormalization group improved perturbative QCD calculations. In the meson 

picture, the role of /J is played by the physical ultraviolet cutoff, to be denoted 

by M, which is used to evaluate the meson loop diagrams. If we truncate only 

on the pseudoscalar mesons, the effective low energy meson theory describing the 

weak and strong interactions will appear nonrenormaliiable and the scale M will 

play an essential role. In the evaluation of the matrix elements (RX ] Qi(k) ] K) 

we will set /.J = M. This identification of /A with M is certainly an idealization in 

the approximate treatment used below, but can be made precise with a complete 

description of quark and meson pictures used for the short and long.distance 

physics, respectively. 

In what follows we will present and discuss the results obtained for the decay 

amplitudes A(K -+ RX) using a combined treatment of the two physical pictures 

and a systematic application of l/N expansion method. The details of the quark 

picture calculations of z;(p) have been already presented in [2,3] where the matrix 

elements (a~ ] Qi(M) ] K) have been given only to leading order in the large N 

expansion. The principal novelty of the present letter are the l/N corrections to 

(?rn ) Q;(M) ] K), which together with the results of [2,3] permit a consistent 

treatment of the amplitudes A(K --) ~T?T) within the large N approach. The details 

of the l/N calculations and the comparison with related approaches 18,s) are 

relegated to a separate publication [lo]. 

Our previous analysis [2,3] combined the l/N expansion with the usual renor- 

malization group analysis including a proper treatment of the threshold effects in 

the penguin contributions to give the coefficients zi(~) listed in Table I for various 
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values of p and AQCD = 300MeV. Roughly the same results for the coefficients 

z1 and .zz are obtained when higher order QCD corrections [ill are included but 

*in- = 200MeV is used. The corresponding higher order corrections to 2s are 

not known. 

To calculate the matrix elements (sa ( Qi(p) 1 K) we will use a truncated 

chiral Lagrangian describing the low energy strong interactions of pseudoscalar 

mesons (12,3] 

Lt, = $[tr(D,UD,U+) + r tr(m(U + CT+)) - @m(DV + D%+))] (3) 

where U = U(n) is the unitary chiral matrix describing the octet of pseudoscalar 

mesons’). DHU is the usual weak covariant derivative and m is the real and 

diagonal quark mass matrix. From the structure of this Lagrangian we can read 

off the consistent meson representation of the quark currents 

c&pq;. = iq (a#p)u+ - wpu+) - -$ [ev’) - ca,a)m]);j (4) 

and the quark densities 

&q;; = -$[u - -pjj. 

The chiral Lagrangian in Eq.(3) must not be viewed as a normal effective tree 

Lagrangian but instead must be used as a fully interacting field theory including 

loop effects. In this sense we are providing a bosonization of the fundamental quark 

theory where all the quark currents and densities have a valid representation in 

terms of the meson fields. In the truncated version, the meson representation is 

valid only for a proper description of the long distance physics. 

In the leading order the parameter r can be eliminated in favour of the meson 

masses 

mi = i(mu f md) rng 1: am3 

‘IThe singlet pseudoscalar meson decouples due to a large mass generated by 
the anomaly. 
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rni = irn& - irn2,. (‘3) 

The Lagrangian parameter fz determines the coupling strength to lowest order in 

the meson momentum while A, sets thescale of the higher order terms which are 

always expected in a truncated theory (note that Ax is a hadronic scale different 

from AQCD). 

The chiral Lagrangian in Eq. (3) contains only terms with a single trace over 

the flavor indices which reflects the large N structure of QCD. The leading N 

contributions to any quantity are simply obtained from the tree diagrams whereas 

the leading l/N corrections are found by calculating the one-loop contributions. 

More generally the l/N expansion corresponds to the loop expansion characterized 

by the inverse powers of jz (jz w N) with the strong interaction vertices given by 

the truncated Lagrangian of Eq. (3). 

There are some similarities between our calculations and the usual chiral per- 

turbative calculations found in the literature [13-151. On the other hand our 

approach distinguishes itself in two important ways. First, the large N structure 

of the basic truncated low energy Lagrangian of Eq.(3) provides a simplification 

over those effective Lagrangians usually considered. More importantly our loop 

calculations employ a cut-off regularization and consequently our results exhibit 

a quadratic dependence on the physical cut-off M. This quadratic dependence is 

lost in the usual chiral perturbative calculations 113-15) which are based on the 

dimensional regularization. In effect, dimensional regularization makes extra in- 

frared subtractions of quadratically divergent terms. These subtractions are not 

permitted in the full integration of the loop contributions to the truncated theory. 

As we will see below the quadratic dependence on the physical cut-off is an essen- 

tial ingredient in the matching of the meson and quark pictures. This quadratic 

dependence is fully consistent with chiral symmetry and also stabilizes the l/N 

expansion. 

The evolution of the coefficient functions zi(p) of Es.(l) is of order l/N 121. 

To consistently evaluate the weak decay amplitudes we must also compute the 

matrix elements (rn ( Q; j K) to the same order in l/N. Hence we must include 

both the tree and one loop contributions to the matrix elements. 

In order to determine the Lagrangian parameters fir and AX we evaluate the 
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diagrams of Fig. 1. In the SU(2) limit we obtain the physical pion and kaon decay 

constants 

(7) 

FK = fir[l+ 2 - 3(2 Zz(&) + Zz(mz) + Zz(mi))] (8) 
x R 

and the ratio 

where 

FK rnk-rn$ 
F,=‘+ A; - :$[2 Zz(m&) + 3 Zz(m~) - 5 Zz(mz)) (9) 

* 

h(d) = (4j$2 -[M2 - rnf In(l+ g mf )I (10) 

with M denoting the cut-off of the truncated meson theory. 

Eqs. (7-9) are the first non-trivial generalizations of Eqs. (2.11)-(2.13) of 

ref. [3] beyond the leading order of l/N expansion. We note that the quadratic 

dependence of the cut-off M cancels in the ratio in Eq. (9). 

Neglecting the rnz/AE term in Eq. (7) the effective inverse coupling strength 

fi at scale M is given by 

fz = f~(M2) = F,” + 2 Zz(mz) + Zz(&). (11) 

Using FT = 93 MeV we find fX = 116,124 and 134 MeV for M = 0.6,0.7 and 

0.8 Gel/ respectively. It is amusing to note that the quadratic dependence on 

the cutoff scale implies a kind of asymptotic freedom behaviour of the running 

coupling constant. 

Using the experimental value FK/F~ = 1.28, we extract from Eq.(9) the value 

of Ax which is essentially independent of M (it changes by less than 2% in the 

range of M considered) 

Ax = 1000 MeV (14 

to be compared with the leading order result (31, Ax = 900 MeV. Our result should 

be contrasted with the one of ref. [12]. Although the formulae for FK/F= in ref. 
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[ 121 and in the present paper agree, 2, the authors of 112) did not take into account 

the cut-off dependence of fir. Their treatment would give A, = 1000,1100,1230 

and 1580 MeV for M = 0.6,0.7,0.8 and 1.0 GeV respectively, i.e. a strong cut-off 

dependence of AX and a large next to leading order correction to its leading order 

value, which could cast doubt on the validity of the l/N expansion. However, as 

we have shown above the proper inclusion of the cut-off dependence in f= stabilizes 

the l/N expansion and gives a roughly cut-off independent AX. 

With these results in hand, we can now evaluate the matrix elements (7~ j 

Q;(M) / K). We begin with the operators Q1 and Q2, The leading order contri- 

butions (tree diagrams) to their matrix elements have been already calculated in 

[l-3] and we will concentrate here on the l/N corrections. There are four kinds of 

one loop diagrams shown in Fig. 2. The diagram in Fig. 2d is a tadpole diagram 

which must be included for the consistency of our approach. The diagrams in Fig. 

2a contain only a five-meson weak vertex whereas the remaining diagrams have in 

addition to a three-meson weak vertex also a four-meson strong vertex. For a given 

operator the relevant weak vertices can be obtained by inserting the meson rep- 

resentation of quark currents (see Eq. (4)) into Eq. (2) and expanding the result 

in powers of l/f:. The strong vertices are inferred from the expansion of Lt, in 

powers of l/j:. The diagrams in which both internal lines originate from the same 

quark current are factoriza6lc. The remaining diagrams are non-factorizable. The 

full calculation, although straightforward, is rather tedious and will be discussed 

in detail in [lo]. The final result reduces however to simple expressions if SU(2) 

symmetry is assumed and Eqs. (7)-(g) are used. 

We find 

x1 s (T+r- I &W2) I K“) = i X FdM2) (13) 

x2 3 (7r+T- t Q2(M2) 1 Ho) = XF + $ X F2(M2) 

X3 E (n’tr’ ) Q1(M2) / K’) = -x, - $ x F3(M2) 

(14) 

(15) 

2)The logarithmic behaviour in Eqs. (7) and (8) agrees also with the one found 
in ref. 1131. 
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x, = (7r +@ 1 Q1,2(M2) 1 K+) = $2 - x41 = $6 - x31 

where 

I Q2(M2) 1 K”) = $ X[&(M2) - FlW2) - FdM2)1 

xF=xp+fir(FK-l) 
F,r F,r 

is the factorizable contribution and 

X = v’?F&n& -WI:). 

The cut-off dependent functions Fl , F2 and F3 are given as follows: 

M2 + ($ + $n;) In(l+ !$)I 

[M2 + (& - +n;) Ln(l + $)] 

and 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

The ratio f,/F, in Eqs. (18) and (20)-(22) appears because fg2 is the expan- 

sion parameter. The arguments of the logarithmic terms are only approximations 

since the maas scale +?a replaces a rather complicated dependence of the exact ex- 

pressions on the meson masses. It turns out, however, that our results are not 

very sensitive to the value of +r , m, < fi < mu. The values of Xi are given for 

different values of M in Table I. 

The following remarks are in order: 

i) X, m Eq.(18) represents the factorizable contributions and the remaining 

terms in Eqs.(13)-(17) come from non-factorizable diagrams (they are all non- 

leading). 

ii) we observe that all the factorizable contributions to (n?r ] Q; ] K) can 

be expressed in terms of the physical decay constants F, and FK. Note that 

the factorizable contributions do not include the usual Fierz rearrangements of 

the quark operators. Due to the effective bosonization,Fierz terms will appear 
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as a part of the non-factorizable loop corrections. We conclude therefore that 

although the vacuum insertion method gives correct results for the leading in N 

contributions [l] it completely misrepresents the next to leading effects. 

iii) we note that the next to leading order corrections to the hadronic matrix 

elements vanish for M = 0 implying that the leading order in l/N expansion 

corresponds to the zero momentum limit. Thus the inclusion of the next to leading 

order corrections can be viewed as taking into account the physics contributions 

from the momentum range from 0 to M. These new contributions make X1 and 

X4 non-zero and increase X2 over its leading order (M = 0) value. Since the 

increase of X4 is stronger than that of X2 the matrix element X5 which governs 

the AI = 3/2 amplitudes is further suppressed. This pattern is not only welcomed 

by the data but, in addition, being the same pattern as in the quark picture, allows 

a plausible matching of the meson and quark evolutions. In fact this matching is 

necessary for a consistent analysis of the K decay amplitudes. 

iv)in the limit m, + 0 Eqs. (13)-(17) can be cast into the following operator 

relations: 

Q1(M2) = Ql(O) + 4 WM2) Qz(0) (33) 

Q2(M2) = Q2(0) + + Fr(M2) Ql(0) + i WM*NQdO) - Ql(O)i (34) 

which show that the inclusion of the next to leading order corrections to hadronic 

matrix elements can indeed be viewed as the evolution of the operators (the meson 

evolution) from zero momentum to M. 

In order to complete the analysis of the amplitudes A(X + ?TX) we still need 

the matrix elements of the operator Qe. Since the coefficient zg is 0(1/N), it 

suffices to use the leading order result [3,12] 

( x+7r- 1 Qe 1 K”) = (x07? 196 / P) = Y (35) 

with 

2 2 - Y 4) = -4&f, 1 2 1 (m2, 

Az 
(26) 
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and (?r+?r’ 1 Qs 1 K+) being zero. Here m, stands for the running strange quark 

mass, ms(n), whose p dependence in the large N limit is given as follows 

mm = rn:p GeV) [ a,P;~~V)]g’ll. (27) 

The p dependence of l/m~(j~) represents through Eq. (26) the diagonal evolution 

of Qa (i.e. the evolution in the absence of the mixing with the operator Qz) and 

cancels exactly the corresponding p dependence of z,j. The remaining Jo depen- 

dence of q is a consequence of the mixing of the operators Qe and 92 and should 

be cancelled by a part of the A4 dependence of the operator 92 given in Eq. (24). 

We will verify the degree of this cancellation below. The values of Y for different 

values of A4 = p and m,(lGeV) = 125 MeV are given in Table I. They should be 

compared with Y = -0.58 GeV3 obtained in [2,3] where the ~1 dependence of ma 

has been neglected and A, = 0.9 GeV and fn = Fr = 93MeV have been used. 

In Table II we show the values of the amplitudes T1 s A(K’ -+ x+n-), 

T2 G A(W -+ ROT’) and T3 s A(K+ -P n+#) for AQCD = 300 MeV and 

various n = M as obtained using the matrix elements of the present letter (Full) 

(see Table I) and the leading order matrix elements (L.O.) of ref. [3]. Furthermore 

we have used tir = 0.3 GeV. The following observations can be made on the basis 

of this Table: 

i) The amplitudes T1 and T2 obtained using the matrix elements of Eqs. (13)- 

(17) are almost P independent implying that the matching of the quark and meson 

pictures is plausible. This weak p dependence should be contrasted with the strong 

n dependence of the amplitudes (LB. ) in which only the leading order matrix 

elements have been used. Comparision of these two cases also shows that the 

evolution in the quark picture is continued with the same pattern in the meson 

picture. 

ii) In the case of the AI = 3/2 amplitude T3 there is a visible p dependence left 

over. One should however realize that T3 is a small amplitude and it is probably 

not surprising that our truncation of the meson physics produces a residual p 

dependence. 

iii) Our results give a satisfactory description of the data within our approx- 

imate treatment of the quark and meson contributions. The experimentally ob- 
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served AI = l/2 rule is clearly exhibited and the obtained value of the AI = 3/2 

amplitude is consistent with the data. Taking Ts = 1.77 10-s GeV and varying 

m,(l GeV) G m, we find for r% = 0.3 GeV 

A(K” --+ x+r-) 
12.9 

Tl 
m, = 125 MeV 

A(K+ --+ x+r”) 
z---z 

T3 
11.6 m, = 150 MeV (28) 

10.7 m, = 175 MeV 

to be compared with (TI/T~)~=~. = 15.0. Although small values of m, are preferred 

we observe that even for m, = 175 MeV a large fraction of the AI = l/2 amplitude 

is reproduced. Our final results are not very sensitive to the value of m, which 

indicates that the Penguin contributions to the amplitudes Tl and T2 are not 

dominant. Indeed their contributions to the ratio in Eq.(28) are 4.3, 3.0 and 2.1 

for the three values of m, considered . Therefore the main bulk of the AI = l/2 

rule comes from the usual octet enhancement [16] which is amplified by the long 

distance contributions considered here. 

iv) We have investigated the sensitivity of our results to the value of 6. For 

rit in the range rnK > riz > m,, M = p = 0.7 GeV and m, = 125 MeV we 

have found in units of 10-s GeV 21.7 < T1 < 23.5, 19.6 < T2 < 20.8 and 

1.45 < T3 < 1.87 . Similar results are obtained for other values of M. One 

observes that the amplitudes Tl and T2 only weakly depend on r?z whereas a 

slightly stronger dependence is observed for T3. 

The details of our analysis, together with the comparision with other ap- 

proaches and the discussion of other possible contributions not included here will 

be discussed in ref. [ 10). 
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Table I. The coefficient functions z; and the matrix elements Xi in units of 

GeV’ for different values of fi = M . In evaluating X;, the scale 61 = 0.3 GeV 

has been used. The last column gives the leading order matrix elements of ref. 

[2](L.O.). The values for z; correspond to AQCD = 0.3 GeV. The values of Y 

correspond to m,(l GeV) = 125 MeV. 
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Table II. The amplitudes A(K + TX) in units of IO-* GeV for different values 

of m,(l GeV) and p as obtained using the matrix elements of the present letter 

(Full) and the leading order matrix elements of ref. [2](L.O.). AQCD = 0.3 GeV 

has been used. 
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Figure captions 

Fig.1 The one loop diagrams contributing to a) wave function renormalization and 

b) the meson decay constants. The solid circle is the strong vertex from Lt, 

of Eq. (3). The solid internal lines represent the propagators of the pseudo- 

scalar meson octet. 

Fig.2 The one loop diagrams contributing to the matrix elements (?rr / Q; 1 K)(i = 

1,2). The solid square is a weak operator vertex from Eq. (2) with the quark 

currents given in Eq. (4). The solid circle is the strong vertex from Lt,. 
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